Batterien und Akkus gibt es ganz viele verschiedene und alle sind sie dafür da, Geräte mit elektrischem Strom zu versorgen und funktionsfähig zu machen. Doch was ist eigentlich der Unterschied zwischen Batterien und Akkus? Ganz einfach: Die Batterie ist im Gegensatz zum Akku nicht aufladbar. Das kennst du zum Beispiel von deinem Wecker oder deinem Taschenrechner. Wenn die Batterie einmal leer ist, musst du sie entsorgen. Einen Handyakku oder den Akku einer Digitalkamera kann man dagegen immer wieder aufladen. Er ist praktisch eine wiederaufladbare Batterie. Doch auch die hält nicht ewig: Mit der Zeit muss man sie immer öfter aufladen, bis sie schließlich zu schwach für das Gerät wird. Auch der Akku muss dann entsorgt werden – oder?

Akku
Ein Akku ist eine wiederaufladbare Batterie.

Umweltfreundlich

Eines steht auf jeden Fall fest: Da du Akkus nicht sofort entsorgen musst, sondern immer wieder aufladen kannst, sind sie ein wenig umweltfreundlicher als Batterien. Sie produzieren schlichtweg nicht so viel Müll. Doch auch bei Akkus gibt es Vor- und Nachteile. Um diese zu erklären, machen wir einen kleinen Ausflug in die Chemie.

Es gibt Nickel-Kadmium-Akkus, Nickel-Metallhydrid-Akkus, Lithium-Ionen-Akkus und Lithium-Ion-Polymer-Akkus. Das hört sich sehr kompliziert an, diese Typen lassen sich aber schnell in zwei verschiedene Gruppen einteilen. Die beiden Akku-Varianten mit Nickel entladen sich sehr schnell selbst. Das bedeutet, wenn du sie auflädst und einfach unbenutzt liegen lässt, ist beim nächsten Benutzen der Akku bereits zu einem Teil leer. Auch die Lithium-Ionen-Akkus entladen sich selbst, allerdings nicht so schnell. Ein Vorteil ist hier auch, dass die Akkus genauso groß sind wie die Nickel-Akkus und trotzdem mehr Energie speichern können. Außerdem haben sie eine längere Lebenszeit. Das sind ein paar der Gründe, warum Lithium-Ionen-Akkus häufig zum Einsatz kommen. Du findest solche Akkus zum Beispiel in Handys und Laptops, aber auch die Batterie in einem Elektrofahrzeug funktioniert wie ein Lithium-Ionen-Akku.

Akku
Vor allem in tragbaren Geräten und Elektroautos findest du Lithium-Ionen-Akkus. — Bild: Daimler AG

Alterung durch Oxidation

Ein Lithium-Ionen-Akku besteht aus vielen Zellen, die wiederum jeweils aus einer positiven und einer negativen Elektrode bestehen. Bei der Aufladung wandern die Ionen von der positiven zur negativen Elektrode und lagern sich dort ein. Bei der Entladung ist es andersherum. Mit der Zeit allerdings oxidieren die beiden Elektroden in einer Zelle. Das bedeutet, sie geben Elektronen ab. Die Folge davon ist, dass sie keine Lithium-Ionen mehr speichern können. Das Auf- und Entladen des Akkus funktioniert immer weniger.

Du fragst dich nun sicher: Warum oxidieren die Elektroden in den Zellen überhaupt? Das hängt vor allem von Temperatur und Ladezustand des Akkus ab. Wenn der Akku zum Beispiel in einer sehr warmen Umgebung aufbewahrt wird und zudem noch vollgeladen ist, altert er sehr schnell.

Akku
Ein Stromspeicher aus alten Batterien von Elektroautos — Bild: Daimler AG

Das zweite Leben der Elektroauto-Batterie

Die Lithium-Ionen-Akkus in den Elektroautos der Daimler AG haben eine Lebensdauer von circa zehn Jahren. Dann muss man sie auswechseln, weil die Reichweite der Autos nicht mehr ausreicht. Sind Elektroautos also wirklich so umweltfreundlich, wenn ihre Akkus alle zehn Jahre entsorgt werden müssen?

Die Daimler AG möchte, dass der Lebenszyklus einer solchen Batterie dann noch nicht endet. Deshalb hat der Autobauer die Batterien von 1000 smart-Elektrofahrzeugen zu einem großen Stromspeicher zusammengeschlossen. Wie ein stationärer Energiespeicher soll er zum Beispiel Sonnen- oder Windenergie speichern und dann verfügbar machen, wenn man diese Energie braucht.

Die Akkus der Elektroautos werden damit nicht nur weitere zehn Jahre verwendet, die Energieanbieter könnten so auch ein weiteres großes Problem lösen. Momentan kommt unser Strom noch aus umweltschädlichen Kraftwerken. Deshalb ist das Ziel, langfristig auf erneuerbare Energien, also Energie aus Windrädern oder Energie durch Solarzellen, umzustellen. Auf diese Energie kann man sich aber nicht verlassen, denn die Sonne scheint nicht immer dort, wo Menschen Strom brauchen, und auch der Wind weht dort nicht immer. Es muss deshalb sogenannte Primärreserven geben. Das sind Energiespeicher, auf die sofort zurückgegriffen werden kann, wenn der Strom mal fehlt. Ein Stromspeicher aus ganz vielen alten Elektro-Akkus kann überschüssige Energie aus Sonne und Wind speichern und in solchen Fällen zum Einsatz kommen.

Akku
So stellt sich die Daimler AG den Lebenszyklus der Batterien aus Elektroautos vor. — Bild: Daimler AG

Der Stromspeicher der Daimler AG soll noch dieses Jahr bei den deutschen Energieanbietern in Betrieb gehen und vollautomatisch funktionieren. Nach zehn Jahren eignen sich die Batterien auch dafür nicht mehr. Dann sollen sie recycelt und für den Bau neuer Batterien für Elektroautos verwendet werden.

Die Arzthelferin führt dich in einen Raum mit einem riesigen Gerät, du bekommst eine schwere Weste an, musst ganz ruhig stehen. Die Helferin geht kurz aus dem Raum. Und dann ist es auch schon vorbei und hat gar nicht weh getan. Schon mal erlebt? Dann bist du schon geröntgt worden.

Röntgenstrahlung –Was ist das?

Röntgenstrahlen sind benannt nach Wilhelm Conrad Röntgen. Er war ein deutscher Physiker und entdeckte die Strahlen im Jahr 1895. Im Gegensatz zu Lichtstrahlen sind Röntgenstrahlen für unser menschliches Auge nicht sichtbar. Warum? Sowohl Lichtstrahlen, als auch Röntgenstrahlen sind sogenannte elektromagnetische Wellen. Der Unterschied ist, dass die Wellen der Röntgenstrahlung kürzer sind, als die Wellen des Lichts.

Röntgentechnologie
Mit so einem Gerät bist du beim Arzt vielleicht schon einmal geröntgt worden / Bild: www.shutterstock.com, gyn9037

Röntgenröhre

Die Röntgenstrahlen entstehen dadurch, dass sich geladene Teilchen beschleunigen. Diese Elektronen wandern in einer sogenannten Röntgenröhre von einem negativen Pol, der Kathode, zu einem positiven Pol, der Anode. Die Kathode kann die Elektronen zu Beginn erzeugen und beschleunigen, weil sie sich erhitzt und die Elektronen so aus einem Metalldraht herauslöst. Diese Beschleunigung der Elektronen reicht aber noch nicht aus, um Strahlung zu erzeugen. Die Elektronen treffen deshalb auf die Anode und werden da stark abgebremst. Es entsteht ebenfalls eine Beschleunigung, aber eine negative. Diese Beschleunigung reicht aus, um „Bremsstrahlung“ zu erzeugen.

Dichtes und weniger dichtes Gewebe

Wie kann diese Strahlung nun ein Röntgenbild erzeugen, auf dem das Innere des Körpers in hell und dunkel erkennbar ist? Ganz einfach: Die unterschiedlichen Helligkeitsstufen auf dem Röntgenbild spiegeln die unterschiedlichen Gewebearten im Körper wider. Hat ein Gewebe eine hohe Dichte, wird es auf dem Röntgenbild heller dargestellt. Hat es eine niedrige Dichte, sieht man es ganz dunkel.

Röntgentechnologie
So sehen Röntgenbilder aus – wie hier von einem Gehirn / Bild: www.shutterstock.com, Rocketclips, Inc.

Dasselbe Prinzip wird auch bei der  Computertomographie (CT) angewendet. Das CT kennst du vielleicht aus dem Krankenhaus. Hier entstehen Röntgenbilder des ganzen Körpers in Form von Querschnittsaufnahmen.  Man kann das Innere so in einer räumlicheren Art und Weise betrachten und untersuchen.

Röntgentechnologie
So sieht das Gerät für die Computertomographie (CT) aus

Ultrakurzzeit-Röntgentechnologie

Zu medizinischen Zwecken eignen sich Röntgenstrahlen also sehr gut. Doch nicht nur das. Die Röntgenfotografie ist zum Beispiel seit einiger Zeit eine ganz besondere Form der Fotografie und Kunst.

Und auch die Daimler AG wendet eine besondere Form des Röntgens  bei Crashtests an: die Ultrakurzzeit-Röntgentechnologie. Dabei testen die Entwickler die Autos wie bei einem ganz normalen Crashtest auf ihre Sicherheit und auf die Sicherheit für Insassen. Zusätzlich werden nun Stellen am Auto ausgewählt, von denen mithilfe der Röntgentechnologie Standbilder gemacht werden. Das ist gar nicht so einfach: Sowohl bei der Fotografie, als auch beim Röntgen verwackeln die Bilder schnell. Deshalb darfst du dich auch nicht bewegen, wenn du geröntgt wirst. Da bei einem Crashtest alles ganz schnell geht und viel Bewegung im Spiel ist, dürfte es hier dann ja kaum möglich sein, scharfe Röntgenbilder zu machen. Das ist es trotzdem. Für diesen Zweck ist einfach eine sehr genaue zeitliche Abstimmung nötig: Im Vergleich zum normalen Röntgen beim Arzt ist die Belichtungszeit bei einem Crashtest nochmal um ein Tausendstel verkürzt.

Röntgentechnologie
Die Daimler AG röntgt beim Crashtest das Auto, um die Sicherheit der Bauteile genau zu untersuchen

Größere Sicherheit

Am Computer können die Daten aus den Röntgenbildern gemeinsam mit den äußeren Beobachtungen vom Crashtest ausgewertet werden. Man kann somit besser nachvollziehen, wie sich Bauteile im Inneren des Autos bei einem Unfall verändern. Die Entwickler der Daimler AG können reagieren und die Bauteile den Veränderungen anpassen und sicherer machen.

Röntgentechnologie
Das Röntgenbild eines Autos

In Zukunft sollen die Röntgenaufnahmen außerdem noch räumlicher werden, ähnlich wie bei der Computertomographie. Aktuell sind die Bilder von den Crashtests zweidimensional, genau wie die Bilder, die auch der Arzt von dir macht. Zukünftig sollen dreidimensionale Bilder vom Inneren des Autos möglich sein. Dafür arbeitet der Autobauer mit dem Fraunhofer Institut in Stuttgart zusammen, das das Röntgen erforscht und gemeinsam mit Daimler für diesen Zweck weiterentwickelt.

Bilder: Daimler AG