Warum ist Licht so wichtig? 

Auch wenn das Auto die Scheinwerfer zum Fahren selbst nicht braucht, sind sie trotzdem essentiell fürs Autofahren. Eine gute Beleuchtung senkt das Unfallrisiko bei Nacht enorm. Andreas Hauser, im Mercedes-Benz Technology Center in Sindelfingen, kurz MTC genannt, an der Scheinwerfererprobung arbeitet, erklärt, warum das so ist: „Generell ist es schwieriger, bei Nacht Auto zu fahren, einfach weil man weniger sieht.”

Das bedeutet, dass Straßenschilder und mögliche Gefahrenquellen genauso von der Dunkelheit verschluckt werden wie Fußgänger oder Tiere auf der Straße. Das wäre gefährlich, die nicht rechtzeitig zu sehen. Eine gute Beleuchtung wirkt hier entgegen und macht das Fahren nicht nur für Menschen hinterm Steuer, sondern auch für alle anderen Verkehrsteilnehmenden viel sicherer. Zudem geht es nicht nur darum, selbst beim Autofahren in der Dunkelheit gut zu sehen – sondern auch von anderen gut gesehen zu werden, und das rechtzeitig.

Aber wie wird eine optimale Beleuchtung eigentlich erreicht? Ganz einfach: durch Tests, Tests und noch mehr Tests. Auf dem Testgelände in Sindelfingen wurden früher sämtliche Scheinwerfer in Autos auf Teststrecken ausprobiert und weiterentwickelt, ehe sie in die Produktion gingen. Heute geht das Ganze auch, ohne direkt auf die Straße zu müssen. Und zwar dank dem Nachtfahrsimulator, mit dem Andreas Hauser und seine Kolleginnen und Kollegen regelmäßig arbeiten.

Was ist der Nachtfahrsimulator genau?

Der Nachtfahrsimulator besteht aus mehreren Teilen. In einem komplett abgedunkelten Raum steht die vordere Hälfte eines Autos als Testfahrzeug. Dieses Auto enthält all die Technik, die man für ein realistisches Fahrgefühl benötigt. „Auf dem Fahrersitz ist es wie im echten Auto”, sagt Andreas Hauser. „Es gibt ein Lenkrad, Gas und Bremse und sogar den Gangwahlhebel, man kann also wie im echten Auto auch vorwärts oder rückwärts fahren.” Außerdem befinden sich im abgedunkelten Raum vier Beamer an der Decke. Vor dem Auto ist eine halbrunde Leinwand aufgespannt, auf die man vom Fahrersitz aus schaut.

Diese Zusammenstellung aus Testfahrzeug, Leinwand, Beamern und abgedunkeltem Raum ist der Nachtfahrsimulator. Gesteuert wird alles über ein Tablet. Man „fährt” also nicht wirklich in diesem speziellen Auto – was man darin sieht, ist eine Simulation, ähnlich wie in einem Computerspiel Andreas Hauser gibt zu, dieses Fahren, ohne wirklich zu fahren, „fühlt sich im ersten Moment schon komisch an” – und manche könnten dabei sogar seekrank werden. Das sei allerdings eine Frage der Gewöhnung und der Tagesform, ergänzt er.

Wie funktioniert der Simulator?

Wenn die Andreas Hauser und seine Kolleginnen und Kollegen den Nachtfahrsimulator nutzen wollen, gewöhnen sie zuerst einmal ihre Augen an die Dunkelheit im Raum. Das ist wichtig, weil unsere Augen mindestens eine Minute Zeit brauchen, um in der Dunkelheit sehen zu können. Dann steigt Andreas Hauser ins Auto, schaltet die Technik ein und die vier Beamer projizieren eine Straße auf die Leinwand. Kleine Monitore in den Rückspiegeln simulieren den Verkehr hinter dem Testfahrzeug. So wird eine authentische Fahrsituation erzeugt. Jetzt kann in dieser Situation das Licht unterschiedlicher Scheinwerfer eingespielt und somit ausprobiert und untersucht werden.

Das bedeutet, dass die Ingenieurinnen und Ingenieure jetzt nicht mehr bis in die Nacht hinein auf natürliche Dunkelheit warten müssen, um Scheinwerfer auszuprobieren. „Wir testen die Scheinwerfer tatsächlich auch noch auf der Straße”, betont Andreas Hauser, „aber mit dem Simulator haben wir die Möglichkeit, schon viel früher Tests durchzuführen.” 

So kann man die Software, also das Computerprogramm, eines Beleuchtungssystems testen, ehe die Hardware, also der tatsächliche Scheinwerfer, entwickelt wurde. Das hat Vorteile, man kann viel mehr ausprobieren und auch vergleichen. Andreas Hauser findet das praktisch: „Ich kann zwischen unterschiedlichen Entwicklungsständen hin- und herschalten, wo ich am realen Fahrzeug erst noch Scheinwerfer ein- und ausbauen müsste. In der Simulation kann ich das einfach mit einem Klick ändern.”

Die Erkenntnisse über die Software fließen dann direkt in die Entwicklung der Hardware mit ein – „bevor die Teile überhaupt produziert sind”, so Andreas Hauser.

Intelligente Lichtsysteme

Seit drei Jahren wird der Nachtfahrsimulator stetig weiterentwickelt und es ist noch lange kein Ende in Sicht. Der nächste Schritt ist es, die Blendsituation des Gegenverkehrs präzise nachzustellen. So kann der Nachtfahrsimulator feststellen, ob das Beleuchtungssystem andere Verkehrsteilnehmer blendet und gefährdet. Bereits jetzt gibt es intelligente Lichtsysteme, die erkennen, ob man gerade durch eine gut ausgeleuchtete Stadt oder einen dunklen Wald fährt – und die Lichtstärke und Reichweite der Scheinwerfer dann genau auf die Umgebung anpassen. 

Andreas Hauser jedenfalls macht sein Job in der Scheinwerfererprobung des Mercedes-Benz Technology Center in Sindelfingen großen Spaß. Auf die Frage, welche Schulfächer für einen solchen Beruf besonders wichtig sind, sagt er: „Es gibt viele Wege, um zu uns zu kommen. Interesse an Naturwissenschaften und Mathematik ist zwar wichtig – aber noch wichtiger ist es, Spaß an dem zu haben, was man gerne macht.” Die Daimler-Welt jedenfalls bietet viele spannende Berufe rund um Technik und Autos – ein paar davon haben auch die Genius Kinderreporter bereits entdeckt.

Beitragsfoto: Daimler AG

Das Wort Aquaplaning setzt sich aus “Aqua” (lateinisch für Wasser) und “planing” (englisch für Gleiten) zusammen und bedeutet übersetzt tatsächlich das Gleiten übers Wasser. Aquaplaning findet meist an den Stellen statt, wo sich das Wasser bei Regen auf der Straße sammelt – besonders in den Spurrillen der Fahrspur oder in Pfützen. Wenn dieses Wasser in die Rillen des Reifens gelangt, kann es passieren, dass die Reifen während der Fahrt den Kontakt mit dem Asphalt verlieren – fast so, als würden sie darauf schwimmen. So kommt es zum Aquaplaning.

Achtung, Rutschgefahr!

Haben die Reifen während der Fahrt keine Haftung mehr mit der Straße, dann fängt das Auto an zu rutschen – ein bisschen so, als wäre es auf Glatteis. Wenn das passiert, kann der Fahrer weder bremsen noch lenken. Er rutscht dann so lange auf der Wasserfläche, bis die Reifen wieder Kontakt mit der Straße bekommen. Dabei kann es leicht zu einem Unfall kommen, da die Wasseroberfläche Lenk- und Ausweichmanöver besonders schwierig macht.

Wie verhalte ich mich beim Aquaplaning?

Kommt es zum Aquaplaning, ist es wichtig Ruhe zu bewahren. Der Fahrer sollte jetzt dafür sorgen, dass sein Fahrzeug an Geschwindigkeit verliert – bedeutet also: Runter vom Gas und langsam die Bremse betätigen. Das Lenken sollte während des Gleitens generell vermieden werden, bis die Reifen wieder Kontakt zur Straße haben.

Besonders bei starkem Regen ist Vorsicht geboten! // Foto: Adobe Stock — maho

So geht es sicher durch den Regen

Aquaplaning kann gefährlich sein, aber es gibt auch Möglichkeiten, dass es nicht so weit kommt. Wenn der Mensch hinterm Steuer Folgendes beachtet, kann er sich vor einem möglichen Unfall schützen:

  • Geschwindigkeit: Je schneller ein Auto fährt, desto schneller können die Reifen auf der Wasserfläche durchdrehen. Es ist deshalb sinnvoll, bei Regen immer etwas langsamer unterwegs zu sein.
  • Abstand: Bei Regen ist es besonders wichtig einen Sicherheitsabstand zu den anderen Fahrzeugen einzuhalten, denn: Fängt das Auto an zu schlittern, hat der Fahrer mehr Zeit die Kontrolle über das Auto zurück zu erhalten.
  • Untergrund: Ein paar Tropfen auf der Straße bedeuten noch nicht gleich Aquaplaning – aber sobald es regnet und sich das Wasser in Spurrillen oder Pfützen sammelt, müssen Fahrer besonders aufpassen.
  • Reifen: Ein Auslöser für Aquaplaning können nicht ausreichend kontrollierte Reifen sein. Es ist deshalb wichtig, dass die Reifen vor der Fahrt immer auf ausreichend Profil und genügend Druck geprüft werden.

Heute sind Milena und ich im Prüf- und Technologiezentrum in Immendingen, wo die neue S-Klasse von Mercedes-Benz vorgestellt wird. Das Gelände ist riesengroß und es gibt verschiedene kilometerlange Straßen – und sogar Steilhänge und eine Fläche, auf der autonom fahrende Autos getestet werden, die Bertha-Fläche.

Vorstandsmitglied Markus Schäfer und die wichtigsten Erfindungen

Eingeladen wurden wir von Markus Schäfer. Er ist Mitglied im Vorstand bei Daimler und Mercedes Benz und wir sind gespannt, was er uns alles erzählen wird. Natürlich fragen wir uns, in welchen Fächern man in der Schule besonders aufpassen muss, um so einen Beruf machen zu können. Markus Schäfer sagt, dass eigentlich alle Fächer wichtig sind – besonders aber Mathe und Physik. Zum Glück mögen wir diese Fächer beide.

Vorstandsmitglied Markus Schäfer trifft die Genius Kinderreporter Alex und Milena in Immendingen
Vorstandsmitglied Markus Schäfer trifft Alex und Milena in Immendingen

Neben uns steht ein großes Modell eines Fahrzeugs, aber es ist kein normales Auto. Eigentlich ist es nur die Karosserie, aber darin ist das komplette Innenleben sichtbar. Wie das Skelett des Autos, so sieht das aus. Als Milena nach der wichtigsten Erfindung fragt, die es bei Daimler gegeben hat, können wir einen genaueren Blick auf diese sogenannte „Schnittkarosse” werfen. Der Sicherheitsgurt in Verbindung mit dem Airbag, sagt Markus Schäfer, ist eine der wichtigsten Erfindungen. Beide haben schon unglaublich viele Menschen bei Unfällen vor Schlimmerem gerettet. Das Modell, das wir sehen, hat sogar ganze 18 Airbags. Markus Schäfer zeigt und erklärt uns ganz genau, wie das funktioniert und wo sie überall im Auto verbaut sind. 

Außerdem zeigt er uns an der Schnittkarosse, wo überall Sensoren und Kameras sind. Die sind wichtig, damit die Fahrerassistenzsysteme dabei unterstützen können, Unfälle zu vermeiden. Und damit diese Systeme im Straßenverkehr richtig funktionieren, wird genau das hier in Immendingen mit echten, fahrenden Autos getestet.

Ein Kind rennt auf die Straße? Kein Problem, dank Fahrerassistenzsystemen

Das wollen wir natürlich sehen! Markus Schäfer stellt uns Katharina Kupferschmid vor, die an der Entwicklung der Fahrerassistenzsysteme arbeitet. Sie nimmt uns mit nach draußen, wo wir tatsächlich bei verschiedenen Versuchen zuschauen können.

So können wir sehen, wie die neue S-Klasse rechtzeitig bremst, wenn zum Beispiel ein Fahrradfahrer oder ein Kind mit einem Ball unerwartet auf die Fahrbahn kommt. Da legt das Auto eine richtige Vollbremsung hin. Milena und ich staunen nicht schlecht. Und das Allerbeste ist: Weder der Fahrradfahrer noch das Kind werden vom Auto erwischt. Natürlich sind es keine echten „Versuchspersonen”, sondern computergesteuerte Attrappen aus Schaumstoff. Wie man die mit wenigen Mausklicks bewegt, schauen Milena und ich uns in der Schaltzentrale natürlich auch direkt an.

Und wie funktionieren die Fahrerassistenzsysteme nun genau? Katharina Kupferschmid erklärt uns, dass Kameras und Sensoren mit Radar am Auto verbaut sind und ständig im Einsatz sind. Und die können erkennen, ob ein Fahrrad oder Mensch im Weg ist. Wenn die Kameras und Sensoren beide dasselbe erkennen, reagieren sie blitzschnell, aktivieren den Bremsassistenten und das Auto kommt zum Stehen. Ganz schön clever, so eine Technik!

Vollbremsung selbst erleben: Milena und ich auf dem Track

Wie sich so eine Vollbremsung anfühlt, können Milena und ich jetzt am eigenen Leib erfahren, denn die Mitarbeiter von Daimler laden uns ein, bei einer Testfahrt mit der neuen S-Klasse mal dabei zu sein. Das lassen wir uns nicht zweimal sagen. Wir steigen – selbstverständlich hinten – ein und dürfen jeden der Versuche einmal live miterleben. Auch den, bei dem das Auto von 120 Stundenkilometern vor einem Schaumstofffahrzeug abbremst. Da werden wir ganz schön durchgeschüttelt – aber zum Glück gibt es Sicherheitsgurte!

Das war ein toller Abschluss dieses wirklich spannenden Tages auf der Teststrecke im Prüf- und Technologiezentrum in Immendingen! Wir sind gespannt, wo es für uns als Genius Kinderreporter als Nächstes hingeht.  

Bis dahin schaut euch doch unser Video aus Immendingen an:

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

PGlmcmFtZSB0aXRsZT0iRGllIEdlbml1cyBLaW5kZXJyZXBvcnRlciBBbGV4IHVuZCBNaWxlbmEgYXVmIGRlciBUZXN0c3RyZWNrZSBpbiBJbW1lbmRpbmdlbiIgd2lkdGg9IjY0MCIgaGVpZ2h0PSIzNjAiIHNyYz0iaHR0cHM6Ly93d3cueW91dHViZS1ub2Nvb2tpZS5jb20vZW1iZWQvZHdSbWVXTW9HLU0/ZmVhdHVyZT1vZW1iZWQiIGZyYW1lYm9yZGVyPSIwIiBhbGxvdz0iYWNjZWxlcm9tZXRlcjsgYXV0b3BsYXk7IGNsaXBib2FyZC13cml0ZTsgZW5jcnlwdGVkLW1lZGlhOyBneXJvc2NvcGU7IHBpY3R1cmUtaW4tcGljdHVyZSIgYWxsb3dmdWxsc2NyZWVuPjwvaWZyYW1lPg==

 

Alle Bilder: Daimler AG

Akku oder Batterie? 

Batterie bedeutet so viel wie Energiespeicher. Wenn dieser wieder aufgeladen werden kann, sobald er leer ist, spricht man von einem Akku. Ist dies nicht möglich, handelt es sich um eine Batterie. Die beiden Begriffe werden aber im üblichen Sprachgebrauch häufig synonym verwendet. 

Bei einem Auto mit Verbrennungsmotor entsteht die nötige Energie, um das Fahrzeug zu bewegen, indem Benzin oder Diesel verbrannt wird. Ein Elektroauto besitzt stattdessen einen Akku, durch den das Auto permanent mit Energie „gefüttert“ wird. Dafür muss man es nur an die Steckdose anschließen und aufladen – ähnlich wie bei einem Handy. Da während des Fahrens keine giftigen Stoffe freigesetzt werden, sind E-Autos wesentlich klimafreundlicher.

Wie weit kann ich damit fahren?

Der Akku ist der teuerste Bestandteil des Elektroautos, denn ohne ihn wäre das Auto nicht fahrtüchtig. Je mehr Energie er speichern kann, desto weitere Strecken kann man zurücklegen. Wie lange man mit einem vollen Akku fahren kann, ist aber sehr unterschiedlich. Die maximale Reichweite liegt aktuell bei 605 Kilometer. Das ist ungefähr so weit wie von Stuttgart nach Berlin. Akkus werden allerdings immer weiter von Forschern optimiert, um sie noch leichter, kleiner und leistungsfähiger zu machen. 

Auch wenn Elektroautos aufgrund ihrer Klimafreundlichkeit gerade im Trend sind, lässt sich am Akku also noch einiges verbessern. Darum setzen viele weiterhin alternativ auf Hybrid-Autos. Diese besitzen sozusagen eine Kombination aus Verbrennungsmotor und Elektromotor. Wie genau das funktioniert, kannst du hier nachlesen.

Was passiert da jetzt genau?

Für den Energiespeicher in E-Autos werden meist Lithium-Ionen-Akkus eingebaut, die auch für Laptops und Digitalkameras verwendet werden.  Der Akku besteht aus zwei Teilen, die man Elektroden nennt. Die Kathode ist sozusagen der Pluspol des Akkus und die Anode der Minuspol. Davon hast du bestimmt schon mal in Verbindung mit einem Magneten gehört. Beim Aufladen wandern die positiv geladenen Lithium-Ionen von der Kathode zur Anode, verbinden sich dort mit den negativ geladenen Teilchen und werden gespeichert. Beim Entladen des Autos während der Fahrt, passiert Folgendes: Die Lithium-Ionen wandern zurück in die Kathode und setzen dort die gespeicherte Energie wieder frei. 

Sicher hast du schon gehört, dass Akkus nicht ewig halten. Durchschnittlich haben sie eine Lebensdauer von acht bis zehn Jahren, bis sie ausgetauscht werden sollten. Danach muss man sie aber auf keinen Fall einfach wegwerfen. Bei nachlassender Leistung kann man die Akkus immer noch als Stromspeicher zum Beispiel in Windenergieanlagen verwenden. Wenn diese Zweitnutzung nicht mehr möglich ist, kann man die einzelnen enthaltenen Rohstoffe auch zurückgewinnen. Der Akku ist nämlich eine echte Schatzgrube: Mehrere Kilogramm Mangan, Kobalt, Nickel und Lithium lassen sich daraus recyceln und wiederverwenden.

 

Produktion von Batterien für Elektroautos
So sieht übrigens eine Akkuproduktion bei Daimler aus. (Foto: Daimler AG)

 

Beitragsfoto: Patrick P. Palej // Adobe Stock

Die Genius Box beinhaltet spannende und anregende Ideenkarten für die Klassenstufen 1-6. Nutzen Sie unsere Genius Box als ergänzendes Home-Learning Unterrichtsmaterial oder zur Auflockerung bestehender Unterrichtseinheiten.

Lassen Sie sich inspirieren: Mitmachexperimente und andere kreative Aufgabenarten aus den Themenfeldern Naturphänomene, Mobilität der Zukunft, Digitalisierung und dem Lebensraum der Kinder wollen entdeckt und spielerisch ausprobiert werden. Die Genius Box enthält auch pfiffige Methodenspiele – alles übersichtlich, klar, kompakt für Sie aufbereitet.

Hier geht es zu allen Inhalten der Genius Box.

Die im Folgenden vorgestellten Inhalte für jede Klassenstufe lassen sich unkompliziert mit i.d.R. haushaltüblichen Materialien daheim durchführen.

Klasse 1+2

Wer hat den Hubschrauber erfunden?

Was steckt drinnen? Geringer Material-Einsatz, toller Effekt, vermittelt technisches und historisches Hintergrundwissen, gebauter Hubschrauber kann überall zuhause fliegen/über Tage Spaß bereiten

Mit einem Klick auf das Bild gelangen Sie direkt zu den dazugehörigen Ideenkarten und Zusatzdokumenten der Genius Box.

Genius Box: Wer hat den Hubschrauber erfunden? Deutsch, Sachunterricht, Klassenstufen 1-2

Brauchen Pflanzen Erde, um zu wachsen?

Was steckt drinnen? Geringer Material-Einsatz, super für die Zeit zuhause. Einer Pflanze tagtäglich beim Wachsen zusehen, wissenschaftliches Arbeiten anhand von Dokumentationen und Reflexionen kennenlernen

Mit einem Klick auf das Bild gelangen Sie direkt zu den dazugehörigen Ideenkarten und Zusatzdokumenten der Genius Box.

Genius Box: Brauchen Pflanzen Erde, um zu wachsen? Sachunterricht, Biologie, Klassenstufen 1-2

Kann ein Blatt ein volles Glas tragen?

Was steckt drinnen? Geringer Material-Einsatz, anstatt Murmeln sind diverse andere Gegenstände einsetzbar, ggf. z. B. in Kombi mit Spielzeug-Bausteinen, wissenschaftliches Arbeiten anhand von Dokumentationen und Reflexionen kennenlernen

Mit einem Klick auf das Bild gelangen Sie direkt zu den dazugehörigen Ideenkarten und Zusatzdokumenten der Genius Box.

Genius Box: Kann ein Blatt Papier ein volles Glas tragen? Sachunterricht, Klassenstufen 1-2

Klasse 3+4

Wie funktioniert 3D-Druck?

Was steckt drinnen? Geringer Material-Einsatz, gute Kombination aus Zubereitung/Backen/Verzehr in Verbindung mit einer ersten Heranführung an 3D-Druck

Mit einem Klick auf das Bild gelangen Sie direkt zu den dazugehörigen Ideenkarten und Zusatzdokumenten der Genius Box.

Genius Box: Wie funktioniert 3D-Druck? Sachunterricht, Kunst, Klassenstufen 3-4

Klasse 5+6

Wobei kann mir mein Smartphone helfen?

Was steckt drinnen? Kinder und Jugendliche lernen ihr Smartphone auf eine andere Art und Weise kennen, sie nutzen das Gerät zur Recherche, Forschung und als Grundlage für Experimente

Mit einem Klick auf das Bild gelangen Sie direkt zu den dazugehörigen Ideenkarten und Zusatzdokumenten der Genius Box.

Genius Box: Wobei kann mir mein Smartphone helfen? Sachunterricht, Technik, Klassenstufen 5-6

Die Genius Box – der Ideenkasten für die Grundschule wurde gemeinsam mit Klett-MINT, Daimler AG Ingenieurinnen und Ingenieuren sowie einem Team aus erfahrenen Schulbuchautoren entwickelt.

Unter einer Lichtmaschine stellst du dir wahrscheinlich eine Maschine vor, die Licht macht. Das ist naheliegend und sogar fast richtig. Die Lichtmaschine sorgt im Auto tatsächlich dafür, dass die Scheinwerfer des Fahrzeugs hell leuchten. Das Licht macht die Maschine aber nicht selbst – sie produziert die Energie dafür. Genius erklärt dir, was die Lichtmaschine noch alles kann und wie sie funktioniert.

Lichtmaschine – was genau ist das?

Die Lichtmaschine ist das eigene kleine Kraftwerk des Autos. Sie versorgt die Scheinwerfer und andere elektrischen Geräte an Bord des Fahrzeugs mit Strom. So kannst du während der Autofahrt Radio hören und die Fenster elektrisch öffnen. Aber auch die Lüftung, Heckscheibenheizung und der Anlasser des Autos benötigen Strom.
Du fragst dich vielleicht, wie die Lichtmaschine den Anlasser mit Strom versorgen kann, wenn das Auto noch gar nicht an ist? Ganz einfach: Während der Fahrt lädt die Lichtmaschine die Autobatterie auf. Die Batterie speichert den Strom und versorgt den Anlasser, selbst wenn das Auto noch aus ist. Deshalb ist es wichtig, die Scheinwerfer auszuschalten, wenn der Motor nicht läuft. Ansonsten entleert sich die Batterie und der Motor startet nicht – und die Lichtmaschine auch nicht.

Wie funktioniert eine Lichtmaschine?

Die Lichtmaschine ist dir vielleicht auch unter der Bezeichnung Generator bekannt. Generatoren sind wie echte Zauberer: Sie verwandeln Bewegungsenergie in elektrische Energie. Das bedeutet, dass die Lichtmaschine Strom produziert, indem sie Bewegungsenergie umwandelt. Und das funktioniert so: Bewegt sich ein elektrischer Leiter durch ein magnetisches Feld, wird in dem Leiter eine elektrische Spannung erzeugt. In der Lichtmaschine befindet sich ein beweglicher Rotor mit Magneten. Der Motor des Autos treibt den Rotor über einen Riemen an. In Folge drehen sich Rotor und Magnete zwischen elektrisch leitenden Spulen im Inneren der Lichtmaschine und eine elektrische Spannung entsteht. Das Prinzip nennt sich elektromagnetische Induktion.

Fahrradlichtmaschine: der Dynamo

Eine ähnliche Funktionsweise kennst du von deinem Fahrrad: Der Dynamo ist ebenfalls ein Generator und wird auch Fahrradlichtmaschine genannt. Er erzeugt das Licht für den Scheinwerfer und die Rückleuchte. Meistens befindet er sich am hinteren Fahrradreifen. Angetrieben von der Drehbewegung des Reifens produziert der Dynamo während der Fahrt elektrische Energie. Einen Motor braucht das Fahrrad nicht. Die notwendige Bewegungsenergie erzeugt der Fahrradfahrer selbst, indem er fleißig in die Pedale tritt.

Lichtmaschine eines Fahrzeugs
Der Keilriemen treibt die Lichtmaschine an. Gut sichtbar in Orange: die Spulen.

Beitragsfoto: Daimler AG

Dass das hier kein gewöhnliches Büro ist, sehen wir gleich, als wir ankommen. Ein riesiges Graffiti vor der Tür und im Flur eine lange Reihe an Filmplakaten an der Wand – haben wir uns im Ort geirrt und sind aus Versehen in einem Kino gelandet? Doch bei einem genaueren Blick sehen wir: Die Filmplakate haben alle etwas mit Daimler zu tun. Das sieht spannend aus!

Das Rätsel, was das Lab1886 ist, wird gelüftet, als wir unsere Interviewpartnerin kennenlernen: Susanne Hahn leitet das Lab und erklärt uns, was hier gemacht wird. Das Lab1886 ist eine Ideenschmiede – hier arbeiten viele sehr unterschiedliche Menschen mit ganz unterschiedlichen Hintergründen in einer Atmosphäre, in der sie ganz besonders kreativ werden können. Und warum? Um sich neue Ideen für die Zukunft auszudenken, an denen im Lab dann weitergetüftelt wird. Übrigens ist es gar nicht schlimm, wenn eine Erfindung einmal nicht funktioniert, sagt Susanne – genau dafür ist so ein Lab nämlich auch da. Einfach mal machen und ausprobieren.

Technik für die Zukunft: Volocopter und Brennstoffzelle

Jetzt wollen wir natürlich wissen, was das für Ideen sind, die sich die Mitarbeiterinnen und Mitarbeiter hier ausdenken. Susanne lädt uns zu sich ins Büro ein und zeigt uns ein Modell. Es sieht aus wie ein Hubschrauber – nur statt ein großes Rotorblatt hat er ganz viele kleinen. Der Volocopter. Den habe ich doch schon einmal in einem anderen Kinderreporter-Video gesehen! 

Susanne erzählt, dass der Volocopter für die Mobilität der Zukunft steht. Er kann zwar durch einen Piloten gesteuert werden, aber auch ganz autonom fliegen. In der Zukunft könnte er wie ein „Lufttaxi“ funktionieren – man bestellt den Volocopter per App, um damit kürzere Strecken in der Stadt zurückzulegen. Ganz schön praktisch. Wir fragen Susanne, ob sie sich auch trauen würde, in dem Volocopter mitzufliegen. Sie nickt begeistert und sagt, sie habe sich schon auf die Warteliste eintragen lassen. Ob Alex und ich das auch machen können? Mit dem Volocopter mitzufliegen macht bestimmt Spaß!

Trinkwasser statt Abgase: die Brennstoffzelle

Eine andere Idee, an der hier gearbeitet wird, stellt uns Susannes Kollege Joachim vor. (Er sitzt übrigens in einem richtig coolen Büro – aber seht selbst im Video!) Vor ihm auf dem Tisch steht ebenfalls ein Modell, diesmal das eines Fahrzeugs. Und das kann sogar fahren – mit echtem Wasserstoff! Joachim arbeitet nämlich an einer ganz besonderen Technologie: der Brennstoffzelle. Wir kennen das Prinzip bereits von unseren Kinderreporter-Vorgängern, Emma und Nick: Wasserstoff reagiert mit Sauerstoff und erzeugt dabei elektrische Energie, die wiederum das Auto vorantreibt. Dabei entstehen keine Abgase, sondern es kommt tatsächlich nur Wasser aus dem Auspuff! Und das ist einfach richtig gut für die Umwelt!

Joachim erzählt, dass man die Brennstoffzelle nicht nur als Antrieb für Autos nutzen kann. Seine Aufgabe ist es, weitere Bereiche zu finden, in der diese Technologie sinnvoll eingesetzt werden kann. Ein Beispiel sind sogenannte Notstromaggregate. Die braucht man, wenn der Strom aus der Steckdose einmal ausfällt. Alex denkt natürlich gleich daran, dass er dann sein Computerspiel nicht unterbrechen muss – doch Joachim erinnert uns daran, dass ein Stromausfall ja auch richtig gefährlich werden kann. Wenn zum Beispiel im Krankenhaus der Strom ausfällt, während gerade operiert wird. Daran haben wir noch gar nicht gedacht! Da kann die Brennstoffzelle sogar Leben retten!  

Jetzt kommen wir! Unsere eigene Idee

Jetzt haben Alex und ich so viel von spannenden Ideen für die Zukunft gehört – und außerdem hat Susanne doch gesagt, dass neue Ideen von überall kommen können und sie sich im Lab1886 jede Idee anhören. Da wollen Alex und ich jetzt auch eine eigene Idee vorstellen. Susanne ist sofort dabei und wir treffen uns mit ihr, Joachim und einem weiteren Kollegen im sogenannten Pitch-Raum. Ein Pitch ist das Vorstellen einer neuen Idee – und genau das machen Alex und ich jetzt. 

Wäre es nicht super praktisch, eine App zu haben, die einem beim Vorbereiten eines Referates hilft? Alex und ich nennen diese Idee den „Genio-Bot“ und zeichnen und schreiben wie wild ein ganzes Flipchart voll, während wir erzählen, was der „Genio-Bot“ alles kann. 

Wie Susanne und ihre Kollegen unsere Idee finden? Das seht ihr im Video!

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

PGlmcmFtZSB0aXRsZT0iV28gZGllIElkZWVuIGVudHN0ZWhlbjogR2VuaXVzIEtpbmRlcnJlcG9ydGVyIEFsZXggdW5kIE1pbGVuYSBpbSBMYWIxODg2IiB3aWR0aD0iNjQwIiBoZWlnaHQ9IjM2MCIgc3JjPSJodHRwczovL3d3dy55b3V0dWJlLW5vY29va2llLmNvbS9lbWJlZC9HRjBBeWQyNVNQQT9mZWF0dXJlPW9lbWJlZCIgZnJhbWVib3JkZXI9IjAiIGFsbG93PSJhY2NlbGVyb21ldGVyOyBhdXRvcGxheTsgZW5jcnlwdGVkLW1lZGlhOyBneXJvc2NvcGU7IHBpY3R1cmUtaW4tcGljdHVyZSIgYWxsb3dmdWxsc2NyZWVuPjwvaWZyYW1lPg==

 

Vielleicht hast du einen Autobesitzer schon einmal stolz sagen hören: Mein Auto hat sehr viel PS! PS steht für Pferdestärke und ist eine Maßeinheit, mit der die Leistung von Maschinen gemessen wird. Auch die Leistung von Autos wird sehr oft in Pferdestärke angegeben. Aber wie viel ist eine Pferdestärke? Und was hat ein Pferd mit einem Auto gemeinsam?

James Watt: der Erfinder der Pferdestärke

Zunächst einmal musst du wissen, dass Pferde für die Menschen früher unersetzbar waren. Im Verkehr zogen Zugpferde große Kutschen und in der Landwirtschaft bewegten Arbeitspferde schwere Pflüge. Auch im Bergbau halfen Pferde – die sogenannten Grubenpferde trieben große Pumpen an, mit denen sie das Wasser aus Bergwerken an die Oberfläche transportierten. Der Ingenieur James Watt entwickelte eine Maschine, die die Arbeit der Grubenpferde durch Maschinenkraft schneller und effektiver erledigen konnte: die Dampfmaschine.

James wollte seine Dampfmaschinen natürlich an viele Bergwerksbesitzer verkaufen. Deshalb erfand er 1783 die Maßeinheit Pferdestärke, um die Leistung von Pferden mit der Leistung seiner Maschine zu vergleichen: Ein Pferd konnte innerhalb von einer Sekunde ein Gewicht von 75 Kilogramm einen Meter ziehen. Diese Leistung definierte Watt als 1 PS, also eine Pferdestärke. Seine Dampfmaschine konnte mit Maschinenkraft viel mehr heben als die Pferde. Der Vergleich überzeugte nicht nur die Bergwerksbesitzer, sondern auch andere Industrielle und Mühlenbauer und James Dampfmaschine wurde sehr erfolgreich.

Starke Motoren mit Pferdestärke

Und wie kam die Pferdestärke ins Auto? Die Maßeinheit wurde nach dem Erfolg der Dampfmaschine auch für andere Maschinen und deren Motoren verwendet. Seitdem es Fahrzeuge wie Autos, Busse oder LKWs gibt, wird ihre Motorleistung in Pferdestärke angegeben. Das kannst du dir so vorstellen: Ein Auto mit 100 PS wird bildlich gesehen von 100 Pferden gezogen. Mit dem Unterschied, dass Pferde nicht 150 km/h schnell rennen können. Ein Auto mit 100 PS kann normalerweise 150 km/h oder sogar noch schneller fahren.

Trotzdem sagt die Leistung von Motoren nicht viel über die Geschwindigkeit eines Fahrzeugs aus. Das glaubst du nicht? Ein starker Traktor hat um die 400 PS, kann aber nicht mehr als 50 km/h fahren. Denn der Motor bewegt eine viel größere Masse und dafür benötigt er viel Pferdestärke. 

Watt statt Pferdestärke

Die Begriffe Watt oder Kilowatt hat du sicherlich auch schon gehört. Watt ist wie die Pferdestärke eine Maßeinheit für Leistung. Seit der Einführung von Watt gilt die Pferdestärke als veraltet und im Gegensatz zur Pferdestärke kannst du die Einheit Watt auf der ganzen Welt verwenden. Trotzdem ist die Angabe von Pferdestärke in der deutschen Automobilindustrie noch sehr gebräuchlich und du wirst Autobesitzer und Autoliebhaber immer wieder über PS reden hören. 

James Watt gilt als Erfinder der Dampfmaschine und der Bezeichnung „Pferdestärke“
James Watt gilt als Erfinder der Dampfmaschine und der Bezeichnung „Pferdestärke“.

 

Beitragsfoto: Adobe Stock // Terri Cage

Passt mein Auto in die Lücke? Und wie wie viel Freiraum habe ich noch nach hinten und vorne? Diese Fragen stellen sich Autofahrer, wenn sie eine Parklücke oder einen freien Parkplatz entdecken. Es ist nämlich gar nicht so leicht, die Größe und die Abstände einer Parklücke richtig einzuschätzen. Bestimmt hast du dich schon einmal an einem Tisch oder Schrank gestoßen, weil du den Abstand falsch eingeschätzt hast. Dann weißt du auch, dass so ein kleiner „Unfall“ sehr schnell passieren kann und wir uns leicht verschätzen. Dein Papa muss sich also konzentrieren, um beim Einparken mit eurem Auto nicht an ein anderes Fahrzeug oder gegen einen Pfosten zu stoßen. Damit das Parken einfacher und schneller gehen kann, gibt es verschiedene Technologien, die dem Fahrer helfen.

Augen im Hinterkopf: die Rückfahrkamera

Assistenzsysteme wie die Rückfahrkamera und Parksensoren sind kleine Helfer, die das Einparken leichter machen. Im Rückspiegel ist oft nicht alles sichtbar, was hinter dem Auto passiert. Und wenn sich der Autofahrer umdreht und durch die Heckscheibe schaut, dann kann er trotzdem nicht sehen, was von seinem Auto verdeckt wird. Eine Rückfahrkamera hilft und zeigt dem Fahrer, was in dem nicht sichtbaren Bereich passiert. Der Fahrer kann so Hindernisse rechtzeitig erkennen und Abstände besser einschätzen. Die Parksensoren ermöglichen einen “Rundherum-Blick” um das Auto. Mit ihrer Hilfe werden Menschen und Gegenstände erkannt, die in unmittelbarer Nähe des Autos stehen. Die Sensoren informieren den Fahrer mit Geräuschen und Lichtsignalen über Hindernisse. 

Einparken mit Parkassistent

Mit den Assistenzsystemen ist das Parken schon sehr viel leichter. Noch einfacher wird es mit dem Parkassistenten. Der intelligente Helfer findet nicht nur passende Parklücken, er kann das Auto sogar fast alleine steuern. Wenn der Parkassistent aktiviert ist und einen Parkplatz findet, dann muss der Autofahrer nur einen Knopf drücken und den Rückwärtsgang einlegen. Der Parkassistent übernimmt das Steuer, während der Fahrer sanft das Gas- oder Bremspedal bedient. Wie ist es möglich, dass der Parkassistent das Auto nicht anstößt? Ganz einfach: Kleine Sensoren an dem Auto senden bei geringen Fahrgeschwindigkeiten Ultraschallwellen aus. Ein elektronisches Steuergerät misst und erkennt, ob und wie viel Freiraum da ist. Und schon ist das Auto eingeparkt.

Fahrerloses Einparken: wie von Geisterhand

In Zukunft sollen die Parkplatzsuche und das Parken noch viel einfacher werden – durch Einparken, das komplett ohne einen Menschen auf dem Fahrersitz auskommt: Schon bald könnte es Parkhäuser geben, in denen sich die Autos automatisch selbst einparken. Der Fahrer leitet den Parkvorgang dabei mit einer App auf dem Smartphone ein. Das Auto fährt, lenkt und bremst ganz von alleine. Wie das Ganze funktioniert, kannst du in unserem Beitrag Fahrerloses Parken per App nachlesen.  

 

Parkassistent und 360°-Kamera erleichtern das Einparken
Mit Parkassistent und 360°-Kamera fällt das Parken schon viel einfacher!

 

 

Beitragsfoto: Adobe Stock // diy13

Ein Windkanal? Davon hast du bestimmt schon einmal gehört. Nicht jeder denkt dabei aber sofort an Autos. Dabei ist es äußerst wichtig, die Strömungseigenschaften eines Fahrzeugs zu überprüfen. In unserem Blogbeitrag erklären wir dir, was Windkanäle sind, wozu man sie braucht und warum sie für Autohersteller so wichtig sind.

Windkanal – was genau ist das?

Bevor ein neues Automodell wirklich auf der Straße gefahren werden darf, muss es der Hersteller in einem Windkanal auf aerodynamische und aeroakustische Eigenschaften testen. Was diese komischen Begriffe bedeuten? Ganz einfach: Bei der Aerodynamik misst man die Luftströmung und den Luftwiderstand eines Autos. Mehr Luftwiderstand bedeutet unter anderem einen höheren Spritverbrauch und bremst das Auto bei hoher Geschwindigkeit aus. Mit der Aeroakustik untersucht man die Geräusche, die der Fahrtwind an verschiedenen Autoteilen verursacht.
In einem Windkanal kann außerdem getestet werden, wie sich unterschiedliches Klima auf ein Auto auswirkt oder ob die Anbauteile bei hohem Fahrtwind stabil bleiben. Kennst du schon unser Kinderreporter-Video mit Emma und Nick im Klimakanal? Da haben die beiden innerhalb von kürzester Zeit heiße Sommertemperaturen sowie klirrende Kälte erlebt. Schau mal rein!

Wie funktioniert ein Windkanal?

Windkanäle können verschieden aufgebaut sein. Man entscheidet vor allem zwischen dem offenen und dem geschlossenen Windkanal. Bei einem offenen saugt eine Düse die Luft von  draußen in das Gebäude, bläst sie über das Auto und anschließend wieder aus dem Windkanal hinaus. Bei einem geschlossenen Windkanal wird die Luft im Kanal behalten und wie in einem Kreislauf immer wieder über das Auto geblasen.
Damit die Ingenieure erkennen, wie die Luft um das Auto fließt, wird Rauch oder Nebel in den Luftstrom gemischt. Außerdem kann Ruß oder Farbe dabei helfen, die Luftströmung sichtbar zu machen.

Welche Arten von Windkanälen gibt es?

Neben dem Aerodynamik- und Aeroakustik-Windkanal gibt es noch weitere Windkanäle: In einem Klimawindkanal kann man überprüfen, wie ein Auto auf extreme Kälte oder Hitze reagiert. Schließlich sollte so ein Fahrzeug überall auf der Welt einsatzfähig sein. Die aerodynamischen Eigenschaften von Raketen oder Düsenjets testet man in Überschall- beziehungsweise Hyperschall-Windkanälen. Dort werden Strömungen mit extremer Geschwindigkeit erzeugt.
Wie du gelernt hast, muss ein neues Automodell vor dem Verkauf einige Tests bestehen. Der Windkanal gehört dabei mit zu den wichtigsten, schließlich möchte kein Autofahrer ein Fahrzeug besitzen mit unnötig hohem Spritverbrauch. Und laute Geräusche bei hohem Fahrtwind nerven bestimmt nicht nur deine Eltern, wenn sie das Auto fahren, sondern auch dich auf dem Rücksitz.

Ein Auto wird in einem Klimawindkanal getestet
Ein Auto wurde gerade in einem Klimawindkanal auf extrem kalte Temperaturen getestet. Bild: Daimler AG

 

Beitragsfoto: Daimler AG